

Rethinking Cybersecurity for Distributed Science

Deb Agarwal

DAAgarwal@lbl.gov

Lawrence Berkeley Laboratory

Threats

- Viruses
- Worms
- Malicious software downloads
- Spyware
- Stolen credentials
- Insider Threat
- Denial of service
- Root kits
- Session hijacking
- Agent hijacking
- Man-in-the-middle
- Network spoofing
- Back doors
- Exploitation of buffer overflows and other software flaws
- Phishing
- Audits / Policy / Compliance
- ?????

Threats

- Viruses
- Worms
- Malicious software downloads
- Spyware
- Stolen credentials
- Insider Threat
- Denial of service
- Root kits
- Session hijacking
- Agent hijacking
- Man-in-the-middle
- Network spoofing
- Back doors
- Exploitation of buffer overflows and other software flaws
- Phishing
- Audits / Policy / Compliance
- ?????

Example - Credential Theft

Widespread compromises

- Over 20++ sites
- Over 3000+ computers
- Unknown # of accounts
- Very similar to unresolved compromises from 2003

Common Modus Operandi

- Acquire legitimate username/password via keyboard sniffers and/or trojaned clients and servers
- Log into system as legitimate user and do reconnaissance
- Use "off the shelf" rootkits to acquire root
- Install sniffers and compromise services, modify ssh-keys
- Leverage data gathered to move to next system
- The largest compromises in recent memory (in terms of # hosts and sites)

Cybersecurity Trend - Reactive

- Firewall everything only allow through vetted applications with strong business need
- Users never have administrator privileges
- All software installed by administrators
- All systems running automated central configuration management and central protection management
- Background checks for ALL government employees, contractors, and users with physical presence for issuance of HSPD-12 cards (PIV)
- No access from untrusted networks
- Conformance and compliance driven
- It is a war

Distributed Science Reality

- Collaborations include as many as 1000's of scientists
- Collaborators located all over the world
- Many users never visit the site
- Virtual organization involved in managing the resources
 - Include multiple sites and countries
 - Distributed data storage
 - Distributed compute resources
 - Shared resources
- Do not control the computers users are accessing resources from
- High performance computing, networking, and data transfers are core capabilities needed
- Authentication, authorization, accounting, monitoring, logging, resource management, etc built into middleware
- These new science paradigms rely on robust secure high-performance distributed science infrastructure

Virtual Organization (VO)

- Includes multiple real organizations/sites and stakeholders
- Supporting users spread around the globe
- Needs to be able to coordinate resource utilization
- Issues
 - Contain impact of a compromised user and host credentials
 - Minimize impact of compromise of services
 - Response to and control of incidents tested in realistic distributed environments
 - Latency of response to and containment of incidents minimized.
 - Usable and timely forensic information
 - Stakeholders (site security, VO administration, etc) need to be able to monitor and control local security and coordinate with the VO

Current Operational Reality

- Cybersecurity group
 - Protect border
 - Protect network
 - Some host protections
 - Control access patterns
- System Administrators
 - Protect hosts
 - Authorize users
 - Define access capabilities
- Applications and software
 - Authenticate users
 - Authorize users
 - Open ports/connect to servers/transfer data
- Virtual Organizations
 - > Fine-grained authorization
 - Policy enforcement

Cybersecurity and Infrastructure to Support Distributed Science

Preserve

- Access to national user facilities
- > Participation in international collaborations
- Ability to host scientific databases and repositories
- Innovation and prototyping capabilities

Protect

- High performance computers
- > Experiment systems
- Desktop and laptop systems
- Ability to do science
- Need to figure out how to preserve and support open science while protecting the resources from cyber incidents

Robust Science Support Framework

Web Services, Portals, Collaboration Tools, **Problem Solving Environments**

Authentication

Authorization

Resource Discovery

Communication Secure

And Monitoring Event Services

Transfe Data '

Scheduling Data Curation

Compute

Application Servers

Asynchrony Support

Organization /irtual

Cybersecurity Protections

Science is on the Front Lines

- The techniques needed to protect the open science environment today are needed by other environments tomorrow – Past examples
 - Network intrusion detection
 - Insider threat
 - Defense in depth
 - High performance capabilities
- A next set of concerns
 - Reducing credential theft opportunities
 - Detection of insider attacks
 - Communication and coordination between components to recognize and react to attacks in real time
 - > Tools which address day zero-1 vulnerabilities
 - Improved analysis techniques data mining and semantic level searches
 - Prevention and detection of session hi-jacking

HEP Cybersecurity Workshop – March 2005

- Identified a number of critical areas to be addressed
- Vulnerabilities to a potential incident
 - Loss of unique data
 - Insertion of fraudulent data
 - Inability to reestablish control of the computing infrastructure after an incident.
 - Subversion of system software (loss of integrity)
 - Inability to ingest detector output
 - Massive coherent failure of the ensemble of resources
 - Compromise of key infrastructure
 - Pervasive slow down due to compromise that couldn't be removed

Enabling Virtual Organizations (HEP Workshop)

- Real-time Security Logging and Auditing Service
- Auditing of all necessary components integrated with information service
- Resource vulnerability scanning coordinated with sites
- Intrusion Detection Systems / Intrusion Prevention Systems deployment
- Border Control (site and VO)
- Cybersecurity mechanisms configuration verification

HEP Proposed Program of Work

- Risk analysis and best practices
- Security logging and auditing service
- Incident response and recovery (coordinated across the VO and sites)
- Middleware vulnerability testing and analysis
- Other work
 - Wide-Area Network Monitoring
 - Data Integrity
 - Authentication / Authorization Issues
 - Authorized Audit Log Write/Read Access
 - Disposable Execution Environments
 - Rootkit detection

Proposed Cybersecurity R&D Program

- Coordination of distributed science software infrastructure with cybersecurity mechanisms
 - Authentication, authorization, and encryption in the middleware can coordinate with the cybersecurity systems to open temporary ports etc
- Coordination between cybersecurity components
 - Significantly improve detection of attacks; particularly insider attacks
 - Notify broadly of attacks as they are identified
 - Improve handling of encrypted sessions
- Improved risk- and mission-based cybersecurity decisions
- New authentication, credential translation, and proxy mechanisms
- Data integrity protection/recovery
- Tools for the high-performance computing environment
 - Analysis tools which can efficiently ingest and analyze large quantities of data
 - Semantic level investigation of data
 - Security tools for high bandwidth reserved paths
- Improved data collection, forensics, recovery
- Focus on practical solutions, integrating middleware security, and working with operations personnel during the design, development, and testing

Using OPKeyX in Grid environments

Conclusions

- Distributed science has become core to the conduct of science
- Robust, secure, and supported distributed science infrastructure is needed
- Attackers are getting more malicious and quicker to exploit vulnerabilities
- Distributed science requires a fresh approach to cybersecurity
- Need to set the example for protecting distributed infrastructure
- COTS is a key component of the solution but will not solve many aspects of the problem
- Need to partner cybersecurity operations, cybersecurity researchers, system administrators, and middleware developers